MODEM: multi-omics data envelopment and mining in maize

نویسندگان

  • Haijun Liu
  • Fan Wang
  • Yingjie Xiao
  • Zonglin Tian
  • Weiwei Wen
  • Xuehai Zhang
  • Xi Chen
  • Nannan Liu
  • Wenqiang Li
  • Lei Liu
  • Jie Liu
  • Jianbing Yan
  • Jianxiao Liu
چکیده

MODEM is a comprehensive database of maize multidimensional omics data, including genomic, transcriptomic, metabolic and phenotypic information from the cellular to individual plant level. This initial release contains approximately 1.06 M high quality SNPs for 508 diverse inbred lines obtained by combining variations from RNA sequencing on whole kernels (15 days after pollination) of 368 lines and a 50 K array for all 508 individuals. As all of these data were derived from the same diverse panel of lines, the database also allows various types of genetic mapping (including characterization of phenotypic QTLs, pQTLs; expression QTLs, eQTLs and metabolic QTLs, mQTLs). MODEM is thus designed to promote a better understanding of maize genetic architecture and deep functional annotation of the complex maize genome (and potentially those of other crop plants) and to explore the genotype-phenotype relationships and regulation of maize kernel development at multiple scales, which is also comprehensive for developing novel methods. MODEM is additionally designed to link with other databases to make full use of current resources, and it provides visualization tools for easy browsing. All of the original data and the related mapping results are freely available for easy query and download. This platform also provides helpful tools for general analyses and will be continually updated with additional materials, features and public data related to maize genetics or regulation as they become available.Database URL: (http://modem.hzau.edu.cn).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining

Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...

متن کامل

Re-mining Association Mining Results through Visualization, Data Envelopment Analysis, and Decision Trees

Re-mining is a general framework which suggests the execution of additional data mining steps based on the results of an original data mining process. This study investigates the multi-faceted re-mining of association mining results, develops and presents a practical methodology, and shows the applicability of the developed methodology through real world data. The methodology suggests re-mining...

متن کامل

An extended of multiple criteria data envelopment analysis models for ratio data

One of the problems of the data envelopment analysis traditional models in the multiple form that is the weights corresponding to certain inputs and outputs are considered zero in the calculation of efficiency and this means that not all input and output components are utilized for the evaluation of efficiency, as some are ignored. The above issue causes the efficiency score of the under evalua...

متن کامل

A Proposed Combination Method for Ranking Options in Multi-Criteria Decision Making by Data Envelopment Analysis and Common Set of Weights

The purpose of this paper is to fully ranking decision-making units using a combination of multi-criteria decision-making techniques and data envelopment analysis. Due to this fact that weights play an important role in ranking the options by multi-criteria decision-making methods and most of these methods have weakness in using weighting methods, therefore the ability for data envelopment anal...

متن کامل

A Chance Constraint Approach to Multi Response Optimization Based on a Network Data Envelopment Analysis

In this paper, a novel approach for multi response optimization is presented. In the proposed approach, response variables in treatments combination occur with a certain probability. Moreover, we assume that each treatment has a network style. Because of the probabilistic nature of treatment combination, the proposed approach can compute the efficiency of each treatment under the desirable reli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016